(1)气流颗粒加速喷嘴:在气流和颗粒充分混合后,颗粒可以获得很高的速度(几乎和气流速度相同),但材料在喷嘴内壁磨损严重,在实际应用中很少使用。
(2)注射器加速粒子:高速(超音速)气流和颗粒在混合管中混合加速,颗粒获得较高的速度,但材料对混合管的磨损严重。
(3)自由气流加速粒子:粒子以自由落体的形式进入高速气流束,此时只有高速气流通过喷嘴,磨损很小。然而,由于颗粒的下落速度(横向)很低,很难进入气流束的中心(高速气流)获得高速气流。
从这个角度看,气流磨的效率主要取决于颗粒在流化床中的相对碰撞速度和碰撞角,因此只有改变喷嘴和磨削腔的几何形状和结构设计,才能提高气流磨的效率。降低气流磨的能耗,提高生产效率,可以从改善喷嘴结构、确定喷嘴间距、改善磨削腔形状、确定磨削腔材料水平等方面入手。
在主喷嘴周围设置了几个均匀分布的辅助喷嘴,加速了主喷嘴周围的物质颗粒进入主流束的中心区域,以获得较大的碰撞速度。在主喷嘴的中心设置进料喷嘴,将流化床内的流化颗粒直接吸入主喷嘴的中心,以获得很高的碰撞速度。